
1022 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

SGBoost: An Efficient and Privacy-Preserving
Vertical Federated Tree Boosting Framework

Jiaqi Zhao , Hui Zhu , Senior Member, IEEE, Wei Xu , Fengwei Wang ,

Rongxing Lu , Fellow, IEEE, and Hui Li , Member, IEEE

Abstract— Aiming at balancing data privacy and availability,
Google introduces the concept of federated learning, which
can construct global machine learning models over multiple
participants while keeping their raw data localized. However, the
exchanged parameters in traditional federated learning may still
reveal the data information. Meanwhile, the training data are
usually partitioned vertically in real-world scenes, which causes
difficulties in model construction. To tackle these problems, in this
paper, we propose an efficient and privacy-preserving vertical
federated tree boosting framework, namely SGBoost, where
multiple participants can collaboratively perform model training
and query without staying online all the time. Specifically, we first
design secure bucket sharing and best split finding algorithms,
with which the global tree model can be constructed over
vertically partitioned data; meanwhile, the privacy of training
data can be well guaranteed. Then, we design an oblivious query
algorithm to utilize the trained model without leaking any query
data or results. Moreover, SGBoost does not require multi-round
interactions between participants, significantly improving the
system efficiency. Detailed security analysis shows that SGBoost
can well guarantee the privacy of raw data, weights, buckets,
and split information. Extensive experiments demonstrate that
SGBoost can achieve high accuracy comparable to centralized
training and efficient performance.

Index Terms— Vertical federated learning, tree boosting,
privacy-preserving, efficiency.

I. INTRODUCTION

DUE to the growing concerns about data privacy in modern
society, coupled with the enacted serious privacy laws

like GDPR [1], how to achieve both privacy preservation and
data availability, has become an urgent problem. For example,
GDPR strictly prohibits data sharing between different insti-
tutions, even different internal departments, which hinders the
utilization of precious data. Subsequently, the introduction of
federated learning (FL) [2] provides a solution to the above
problem, as shown in Fig. 1, where multiple participants

Manuscript received 9 June 2022; revised 17 November 2022; accepted
16 December 2022. Date of publication 28 December 2022; date of current
version 6 January 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant U22B2030 and Grant
61972304 and in part by the Science Foundation of the Ministry of Education
under Grant MCM20200101. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. George Theodor-
akopoulos. (Corresponding author: Hui Zhu.)

Jiaqi Zhao, Hui Zhu, Wei Xu, Fengwei Wang, and Hui Li are with the
School of Cyber Engineering, Xidian University, Xi’an, Shaanxi 710126,
China (e-mail: jq_zhao@stu.xidian.edu.cn; zhuhui@xidian.edu.cn; xuwei_1@
stu.xidian.edu.cn; wangfengwei@xidian.edu.cn; lihui@mail.xidian.edu.cn).

Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: rlu1@unb.ca).

Digital Object Identifier 10.1109/TIFS.2022.3232955

Fig. 1. The architectures of federated learning. (a) Vertical FL where
participants have common data samples but different features. (b) Horizontal
FL where participants have common features but different data samples.

can collaboratively construct global machine learning models
while keeping their data localized.

Nevertheless, there are still many challenges in FL [3]. On
the one hand, traditional FL cannot provide a formal guarantee
of privacy. Although the raw data never leave the devices in
FL, the exchanged parameters can also be used to infer data
information [4], [5], [6], [7]. On the other hand, participants’
training data are more likely to be vertically partitioned in
real scenes, i.e., their data have a common sample space
but a different feature space, which causes difficulties in
decomposing the loss function at each participant [8], [9].

To tackle these challenges, plenty of secure vertical FL
schemes have been proposed for the boosting tree model.
Schemes [10] and [11] protect the gradients of boosting trees
by homomorphic encryption [12], but the sensitive model
weights and splits still will be leaked to participants. Mean-
while, since every tree boosting requires sending the ciphertext
gradients to all participants, the system efficiency is less high.
Based on differential privacy [13], [14], schemes [15] and [16]
perturb the data buckets or model weights for privacy preser-
vation, but the added noises will inevitably reduce the model
accuracy. Scheme [17] strongly guarantees privacy by com-
bining homomorphic encryption [12] and secure multi-party
computation [18], but its overhead is unacceptable. Moreover,
almost all schemes require participants to stay online all the
time during model training, which is less realistic due to
network and device constraints.

In this paper, we propose an efficient and privacy-preserving
vertical federated framework for the boosting tree model,
named SGBoost. In SGBoost, bucket sharing and best split
finding algorithms are designed to achieve high-accuracy
boosting tree model training, which is protected by secret

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1604-1953
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0001-8948-9516
https://orcid.org/0000-0002-6886-8258
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-8310-7169


ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1023

sharing [19] and functional encryption (FE) [20]. Subse-
quently, based on a novel symmetric homomorphic encryption
(SHE) [21], we propose an oblivious query algorithm to
provide secure model query services. Specifically, our main
contributions are the following threefold.

• SGBoost achieves high-accuracy tree boosting over verti-
cally partitioned data. Considering that the tree model training
process is only related to the constant data orders, we first
design a bucket sharing algorithm to share the data buckets
of participants’ partial features, through which participants do
not need to stay online all the time. Then, based on the shared
bucket information, the best split finding algorithm is proposed
to perform high-accuracy global model training.

• SGBoost is privacy-preserving in the training and query
processes. By carefully applying FE to the best split finding
algorithm, SGBoost well guarantees the privacy of training
data, bucket information, and split information. Moreover,
we design an oblivious query algorithm to perform model
queries over SHE ciphertexts, where the query data and results
are also protected well.

• SGBoost is efficient in both computational cost and
communication overhead. In SGBoost, there is no requirement
for multi-round interactions between participants; meanwhile,
most time-consuming calculations are securely outsourced to
a high-performance cloud service provider, which improves
the training efficiency significantly. We conduct experiments
on several real-world datasets, and the experimental results
show that SGBoost can achieve low computational cost and
communication overhead for both model training and query.

The rest of this paper is organized as follows. In Section II,
we define the system model and security requirements.
In Section III, we outline some building blocks of SGBoost.
Section IV gives a high-level description of our algorithm
design. Section V introduces the model training and query
processes of SGBoost detailedly, followed by the secu-
rity analysis and performance evaluation in Section VI and
Section VII. Finally, we review related works in Section VIII
and draw a conclusion in Section IX.

II. MODELS, SECURITY REQUIREMENTS,
AND DESIGN GOALS

In this section, we formally describe our system model and
threat model, and then identify our design goals.

A. System Model

In our system model, we mainly focus on i) constructing
a global boosting tree model efficiently and securely over
vertically partitioned data, and ii) using the trained model
for providing secure query services, which mainly involves
three types of entities (a cloud service provider CSP, multiple
participants {P1, P2, · · · , PK }, and a query user U) and two
processes (model training and model query), as shown in
Fig. 2.

1) Participants: Participants {P1, P2, · · · , PK } are different
institutions (e.g., banks, securities companies, etc.) with ver-
tically partitioned training data. Without loss of generality,
we assume participant PK has all data labels. Since the label

Fig. 2. System model under consideration (with two participants).

information is essential for boosting tree model training, PK

can naturally dominate the FL process and obtain the global
model, and other passive participants can get rewards from PK

according to their contributions to the global model. It should
be noted that the initiator or active participant is a generic
setting adopted in most vertical FL schemes [11], [16], [22].

2) Cloud Service Provider: CSP is a cloud service provider
with powerful computing and storage capabilities (e.g., Ama-
zon, Microsoft, etc.), which is responsible for assisting in
model training and providing model query services.

3) Query User: U is a query user who wants to securely
obtain the query result on the trained model.

Model training: During model training, PK first generates
and distributes master keys for passive participants. Then,
passive participants encode and secretly share their data bucket
information with CSP and PK . After that, the model is
constructed iteratively between CSP and PK based on the
proposed secure best split finding algorithm. When the model
converges, passive participants outsource the ciphertext split
thresholds to CSP for providing query services.

Model query: During model query, U first obtains the query
key from PK and sends the ciphertext query data to CSP. Then,
with the assistance of PK , CSP calculates the ciphertext query
response based on the proposed oblivious query algorithm.
Finally, the ciphertext query response is returned to U and
decrypted.

B. Threat Model and Security Requirements

In our threat model, CSP, U, and all participants are con-
sidered as honest-but-curious [23]. That is, they are obliged
to faithfully execute the stipulated protocol process, but may

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



1024 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

infer others’ sensitive information as much as possible. For
example, i) CSP or initiator PK may try to infer other
participants’ training data information from received shared
buckets and parameters; ii) CSP or initiator PK may infer the
query data or result from the query request. Moreover, partic-
ipants are considered non-collusion with CSP in SGBoost to
prevent leaking their own data information. Under these threat
assumptions, SGBoost should satisfy the following security
requirements.

1) Privacy of Raw Data: In FL, the raw training and query
data directly involve user privacy, which should be strictly
protected without a doubt.

2) Privacy of Bucket Information: On obtaining the bucket
information of a certain participant, its data distribution will be
leaked, which also causes a threat to user privacy. Therefore,
participants’ bucket information also should be protected.

3) Privacy of Split Information: As a part of the bucket
information, the split information may also reveal the data
distribution. Therefore, the split information also should be
protected in SGBoost.

4) Privacy of Weights: As proved in [11], when executing
model queries, passive participants can infer the first tree’s
leaf purity from model weights. Though less sensitive than
the above items, it still has potential risks to user privacy and
should be protected in SGBoost.

Moreover, there exist model stealing attacks [24] extracting
the model parameters by querying the model multiple times,
which can be defended by perturbing the query results or
limiting the query times but will inevitably sacrifice the model
availability [25]. In SGBoost, we aim to provide high-accuracy
model training and query, so it is not our focus to design
defensive strategies for model stealing attacks. Meanwhile,
there are some active attacks (e.g., Sybil attack [26], data
poisoning attack [27], [28], etc.) in vertical federated learning,
which also are currently out of the scope of this paper and may
be considered in future work.

C. Design Goals

Under the above system and security models, aiming to
achieve efficient and privecy-preserving vertical tree boosting,
SGBoost should satisfy the following three objectives.

• High accuracy. In modern society, data have become a
precious resource, which can greatly improve the accuracy of
machine learning models and help people make more precise
decisions. Therefore, SGBoost should make full use of the
data worth of participants (even if dropping out midway) and
construct the global model accuracy-losslessly.

• Strong privacy. Although no raw data flow out of the
participants’ local in FL, the exchanged parameters still leak
the data information (containing values and distributions),
which causes great challenges to user privacy. Therefore,
SGBoost should guarantee the training privacy containing the
raw training data, bucket information, and split information,
and guarantee the query privacy containing the query data and
results.

• Low overhead. In most instances, due to the introduction
of some cryptographic operations like homomorphic encryp-
tion, the privacy-preserving machine learning schemes will

add at least two orders of magnitude overhead than origin
schemes. Therefore, the privacy-preserving algorithms should
be carefully designed in SGBoost to achieve low computation
and communication overhead.

III. PRELIMINARIES

This section briefly reviews one of the most widely used
boosting tree models—XGBoost, functional encryption, and
the SHE technique, which serve as the fundamental building
blocks of SGBoost.

A. XGBoost

As one of the most widely used boosting tree models in
practice, XGBoost [29] supports parallel tree boosting, which
can solve many machine learning tasks (such as classifica-
tion and regression) in a fast and accurate way. Specifically,
in XGBoost, the prediction output of a data sample X is
calculated with R trees as ŷ = �R

r=1 fr (X), where fr denotes
the mapping of the r th tree.

Given a dataset D = {Xn, yn}N
n=1 ∈ R

N×(D+1) with N
samples and D features, the model is trained by greedily
adding a tree at the r th training round to minimize the loss

N�
n=1

�
l(yn, ŷ(r−1)

n ) + gn fr (Xn) + 1

2
hn f 2

r (Xn)

�
+ �( fr ),

where l is the loss function, ŷ(r−1)
n is the prediction output

after the (r −1)th training round, and gn = ∂ŷ(r−1)l(yn, ŷ(r−1))

and hn = ∂2
ŷ(r−1)l(yn, ŷ(r−1)) are the first and second order

gradients.
The r th tree is constructed by continuously splitting the

node I (r,t) until it reaches the maximum tree depth T , i.e.,
t ≥ 2T . To be specific, each best split can maximize the gains
among all data buckets, and each gain G can be calculated as

1

2

⎛
⎝(

�
n∈I (r,t)

L
gn)

2�
n∈I (r,t)

L
hn+λ

+
(
�

n∈I (r,t)
R

gn)
2�

n∈I (r,t)
R

hn+λ
− (

�
n∈I (r,t) gn)

2�
n∈I (r,t) hn+λ

⎞
⎠−γ,

(1)

where I (r,t)
L and I (r,t)

R denote the left and right sample spaces
splited by a certain bucket, and γ and λ are two regularization
parameters.

After obtaining the best structure of the r th tree, the weights
of leaf node I (r,t)(t = 2T , · · · , 2T +1 −1) can be calculated as

ω(r)
n (n ∈ I (r,t)) = −

�
n∈I (r,t) gn�

n∈I (r,t) hn + λ
.

It is noteworthy that there are two kinds of bucketing
strategies in XGBoost [29]. The global strategy proposes all
buckets at the beginning of model training and uses the same
buckets for all levels’ split finding, while the local strategy
re-proposes buckets after each split. The global strategy can
achieve a comparable model accuracy with the local one when
more buckets are used. In SGBoost, we adopt the global buck-
eting strategy to design our bucket sharing algorithm, which
can significantly reduce communication and computational
overhead.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1025

B. Functional Encryption

As a generalization of public-key encryption, functional
encryption [20], [30] can finely control the revealed infor-
mation (i.e., calculated function) to a receiver, which can
be written as FE = (Gen, Der, Enc, Dec). In the follow-
ing, we briefly introduce a functional encryption construc-
tion [31] for calculating the inner-product �x · �y, which is based
on additive homomorphic public-key encryption HPKE =
(Gen, Enc, Dec, C).

• FE . Gen(κ, ζ ) → (mpk, msk): Given the security para-
meter κ and vector length ζ , first generate ζ key pairs
(sk1, pk1), · · · , (skζ , pkζ ) with HPKE . Gen(κ). Then, output
the master public key mpk = (pk1, · · · , pkζ ) and master
secret key msk = (sk1, · · · , skζ ).

• FE . Enc(mpk, �x) → [[�x]]: First, choose a shared random
number r from the randomness space of HPKE and calculate
the commitment [[x0]] = HPKE . C(r). Then, given each xi ∈
�x(i = 1, · · · , ζ ), calculate [[xi ]] = HPKE . Enc(pki , xi ; r).
Finally, output the ciphertext [[�x]] = ([[x0]], · · · , [[xζ ]]).

• FE . Der(msk, �y) → sky : Calculate the inner-product �y ·
msk as secret key sky .

• FE . Dec([[�x]], �y, sky) → �x · �y: With sky , the
inner-product of �x and �y can be decrypted by calculating
HPKE . Dec



sky, ([[x0]],�ζ

i=1 [[xi ]]yi )
�

.

C. The SHE Technique

The symmetric homomorphic encryption (SHE) tech-
nique [21], [32] is one kind of somewhat homomorphic
encryption [33], which allows ciphertext additions and a
limited number of ciphertext multiplications. It satisfies indis-
tinguishability under chosen-plaintext attack (IND-CPA) [34],
[35]. The SHE technique contains three functions, namely,
Gen, Enc, and Dec, which are described detailedly in the
following.

• SHE . Gen(k0, k1, k2) → pp, ssk: Given the security
parameters (k0, k1, k2) satisfying k1 � k2 < k0, first select
two large prime numbers p, q with |p| = |q| = k0 and
calculate N = pq . Then, select a k2-bit random number L.
Finally, the symmetric key ssk is (p, q,L) and the public
parameter pp is (k0, k1, k2,N ).

• SHE . Enc(m) → c: Given a message m ∈ (−2k1 , 2k1),
the ciphertext [m] is calculated with ssk as

[m] = Enc(m) = (rL + m)(1 + r � p) mod N ,

where r and r � are k2-bit and k0-bit random numbers.
• SHE . Dec([m]) → m: Given a ciphertext [m], the corre-

sponding plaintext m can be retrieved with ssk by computing

m� = ([m] mod p) mod L,

and

m = Dec([m]) =
⎧⎨
⎩ m�, (m� <

L
2

)

m� − L, (else)
.

Specifically, given two ciphertexts [m1], [m2], and a plain-
text m3, the SHE technique has the following four homo-
morphic properties: SHE . Dec([m1] + [m2]) = m1 + m2,

SHE . Dec([m1] + m3) = m1 + m3, SHE . Dec([m1] ∗ [m2]) =
m1 ∗ m2, and SHE . Dec([m1] ∗ m3) = m1 ∗ m3, (m3 > 0).

Moreover, with different settings of security parameters,
SHE can support different multiplication depths, and greater
security parameters will bring more multiplication depth.
Specifically, given parameters k0 and k2, the depth θ can be
represented as θ = 	 k0

2k2
− 1
 [34].

IV. TECHNICAL OVERVIEW

In this section, we give a high-level description of our
algorithm design. According to the introduction in Section III-
A, the most core and frequent operation in boosting tree model
training is to continuously find the best splits, i.e., calculate
the gains and find the maximum one. From (1), we find that it
needs two kinds of data information to calculate gains, where
one is the gradients g and h, and the other is the bucket
information IL and IR .

In SGBoost, the initiator PK has data labels and model
weights, so it can calculate the gradients locally. Meanwhile,
the data buckets are determined by other passive participants
based on their data distribution. Since both the gradients and
buckets contain sensitive data information, they cannot be
directly shared to calculate gains.

• Challenge 1. How to securely and efficiently share the
necessary information for gain calculations?

Different from other schemes in which PK shares changeful
ciphertext gradients to every passive participant for each tree
construction, we try to secretly share the constant bucket
information only once. We have an observation that the bucket
information is only related to data orders but not specific data
values, so we can encode each bucket to one boolean vector.
Moreover, since the global bucketing strategy is adopted in
SGBoost, the buckets remain constant throughout the model
training process.

Therefore, based on our bucket sharing algorithm, passive
participants only need to share their boolean buckets once
and do not need to stay online during model training, which
improves the system efficiency significantly.

After bucket sharing, CSP and PK respectively receive a
part of the buckets, and they need to collaboratively calculate
gains and find the best splits.

• Challenge 2. How to find the best splits in an efficient
and privacy-preserving way?

By observing (1), we find that the calculations for gains
all involve summing gradients in different buckets, which
is also equivalent to calculating the inner products between
gradients and our proposed bucket vectors. So we utilize a
simple inner-product FE to design our secure best split finding
algorithm. Specifically, for each split finding, PK encrypts
gradients with FE public key and sends them to CSP. Then,
based on FE, CSP can calculate the inner products between
gradients and its shared bucket vectors, and assist PK in
calculating all gains.

Since most intensive calculations are securely outsourced to
a high-performance cloud, the split findings can be efficiently
executed. In terms of security, since the inner products are the
summations of plenty of gradients, the privacy of gradients

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



1026 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

can be well protected. Meanwhile, the split information is
also protected by embedding to ciphertext gradients. Once
obtaining the best splits, PK can update the sample space by
calculating ANDs between it and the best split vector, and then
iteratively execute best split findings for constructing trees.

When the model training is completed, PK obtains the best
tree structure and weights, but the split thresholds are still
mastered by passive participants, which are also sensitive and
necessary for model querying.

• Challenge 3. How to fully protect split thresholds, query
data, and query results when executing model queries?

For protecting the split thresholds, based on the SHE tech-
nique, passive participants first encrypt and outsource them to
CSP. Similarly, PK also outsources the ciphertext weights to
CSP for providing query services. Hence the queries should
be executed over these ciphertext model parameters while
protecting both query data and results.

The core of boosting tree model query is to compare the
query data and thresholds of every splits and to judge which
leaf node the data belong to. In SGBoost, we design an
oblivious query algorithm, which protects the query signs
with a coin mechanism and calculates query results over
SHE ciphertexts. First, CSP perturbs the ciphertext comparison
results with blinding coins. Then, for facilitating ciphertext
calculations, PK decrypts and encodes the perturbed signs to
the ciphertext index ([0], [1]) or ([1], [0]). Finally, CSP can
recover the true indexes and obtain the ciphertext query results
by calculating the multiplications of ciphertext weights and
indexes, where a path with all indexes [1]s indicates the query
data belong to this leaf node.

Since the signs of comparison results are perturbed, PK

cannot obtain the query results. Meanwhile, the values of
comparison results are also perturbed, so the query data cannot
be inferred by PK . Moreover, all calculations in CSP are based
on SHE ciphertexts, so there is no sensitive information leaked
to it. Therefore, in our oblivious query algorithm, both CSP
and PK cannot get any information about the query requests.

V. PROPOSED SCHEME

In this section, detailed descriptions of model training and
query processes are first provided. Then, the correctness of the
algorithms is proved to ensure the model accuracy. Moreover,
the commonly used notations are listed in TABLE I.

A. Description of Model Training

The model training process in SGBoost mainly consists of
four phases: 1) System initialization, 2) Data bucketing and
sharing, 3) Iterative tree boosting, and 4) Training completed,
as shown in Fig. 3.

1) System Initialization: In this phase, all participants ini-
tialize the system via parameter agreement and key generation.

• Step 1: Parameter Agreement.
In this step, all K participants first agree to perform the

stipulated protocol and are willing to collaboratively train a
global boosting tree model over their local training data. Then,
with an entity alignment protocol [36], participants delete
the unrelated data samples and permute the common data

TABLE I

NOTATIONS IN SGBOOST

samples accordingly, where the number of remaining data
samples is written as N . After that, initiator PK randomly
initializes the model weight �(0) = (ω

(0)
1 , · · · , ω

(0)
N ). Finally,

participants agree on the hyperparameters, containing FE
security parameter κ , SHE security parameters (k0, k1, k2),
loss function l, maximum tree depth T , maximum tree number
R, regularization parameters λ and γ , precision parameter 
,
and learning rate η.

• Step 2: Key Generation.
In this step, initiator PK executes FE . Gen(κ, N) to

generate the master key pair (mpk, msk), and executes
SHE . Gen(k0, k1, k2) to generate SHE symmetric key ssk.
Then, by encrypting value 0 twice with ssk, PK calculates
the SHE encryption parameter θk for every passive participant
Pk , which is written as θk = ([0]0, [0]1). Finally, PK sends
msk and corresponding θk to every passive participant Pk over
secure channels.

2) Data Bucketing and Sharing: In this phase, passive
participants perform bucketing for their local training data and
generate the boolean bucketing matrices, which are secretly
shared with PK and CSP, respectively.

• Step 1: Data Bucketing.
After entity alignment, Pk’s local training data D(k) ∈

R
N×Dk can be represented as

D(k) = {X (k)
1 , · · · , X (k)

Dk
},

where Dk is the feature number of D(k), X (k)
d =

(x (k)
1,d, · · · , x (k)

N,d ) is an N-dimension vector denoting the data

values of the dth feature (d = 1, · · · , Dk ), and D = �K
k=1 Dk

is the total feature number. Moreover, initiator PK has the label
vector Y = (y1, · · · , yN ). After that, the complete training

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1027

Fig. 3. The overview of model training in SGBoost.

data can be represented as D = {D(1), · · · ,D(K ), Y }, which
are vertically partitioned over all participants.

In this step, every passive participant Pk first independently
determines its bucket number Sk . Since the global bucketing
strategy is adopted in SGBoost, the bucket number Sk should
be set appropriately more. Then, Pk can obtain the bucketing
threshold vector T (k,d) = (ι

(k,d)
1 , · · · , ι

(k,d)
Sk+1) of its dth feature

(contains the maximum and minimum thresholds). After that,
for the dth feature, Pk generates a boolean bucket matrix
M(k,d) ∈ B

Sk×N as

M(k,d) = {B(k,d)
1 , · · · , B(k,d)

Sk
}T

.

Each bit b(k,d)
s,n ∈ B(k,d)

s is calculated as

b(k,d)
s,n =

�
1, (ι (k,d)

s < x (k)
n,d ≤ ι

(k,d)
s+1 )

0, (else)
,

where d = 1, · · · , Dk , s = 1, · · · , Sk , and n = 1, · · · , N .
• Step 2: Bucket Sharing.
For each bucket matrix M(k,d), passive participant Pk first

generates a shared boolean matrix �M(k,d)
1 ∈ B

Sk×N , where
bit �bs,n(k,d)

1 ∈ �M(k,d)
1 is set as

�bs,n(k,d)
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, (b(k,d)
s,n = 1)

1, (b(k,d)
s,n = 0, p = 1

2
)

0, (b(k,d)
s,n = 0, p = 1

2
)

Then, Pk calculates the shared matrix �M(k,d)
2 as

�M(k,d)
2 = �M(k,d)

1 ⊕ (1 − M(k,d)),

where ⊕ denotes the component-wise XOR calculation.
After that, the bucketing matrix M(k,d) is divided into

�M(k,d)
1 and �M(k,d)

2 , which are sent to PK and CSP,
respectively. Finally, Pk generates the secret key sk(k,d)

s for

each shared row �Bs(k,d)
2 ∈ �M(k,d)

2 (s = 1, · · · , Sk) through
executing FE . Der(msk, �Bs(k,d)

2 ), which is also sent to CSP.
3) Iterative Tree Boosting: In this phase, the global model

is constructed by multi-round interactions between CSP and
initiator PK until the number of trees reaches R.

When training the r th tree, PK initializes an N-dimension
bit vector �(r,1) = (δ

(r,1)
1 , · · · , δ

(r,1)
N ) to represent the sample

space I (r,1), and δ
(r,t)
n = 1 means that the nth data sample

is used for the t th split finding of r th tree. Then, based on
weights (�(0), · · · ,�(r−1)) and data label Y , initiator PK

calculates the gradients G(r) = (g(r)
1 , · · · , g(r)

N ) and H (r) =
(h(r)

1 , · · · , h(r)
N ). After that, PK continuously splits the data

samples until the depth of the r th tree reaches T , which can
be further divided into two steps of best split finding and model
updating.

• Step 1: Best Split Finding.
In this step, initiator PK finds the t th (t = 1, · · · , 2T − 1)

best split as follows (Algorithm 1).
a) Gradient Encryption: PK first calculates ag(r,t) = G(r) ·

�(r,t) and ah(r,t) = H (r) · �(r,t). Then, PK encrypts gradients
G and H through executing FE . Enc(mpk, G(r) ◦ �(r,t)) and
FE . Enc(mpk, H (r)◦�(r,t)),1 where ◦ denotes the component-
wise multiplication. Finally, [[G(r,t)]] and [[H (r,t)]] are sent to
CSP.

b) Shared Parameter Calculation: For the dth data feature
of each participant Pk(k �= K ), PK calculates its shared
parameters �G(r,t,k,d)

1 and �H (r,t,k,d)
1 , where �gs(r,t,k,d)

1 ∈
�G(r,t,k,d)

1 and �hs(r,t,k,d)
1 ∈ �H (r,t,k,d)

1 are�
�gs(r,t,k,d)

1 = G ◦ �(r,t) · �Bs(k,d)
1

�hs(r,t,k,d)
1 = H ◦ �(r,t) · �Bs(k,d)

1

.

1Since the inner-product FE is based on the integer group, elements in G(r,t)

and H (r,t) will be multiplied by 
 and rounded to integers before encryption,
and factor 
 will be divided after decryption.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



1028 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Similarly, CSP calculates the shared parameters
�gs(r,t,k,d)

2 ∈ �G(r,t,k,d)
2 and �hs(r,t,k,d)

2 ∈ �H (r,t,k,d)
2 (s =

1, · · · , Sk) as⎧⎨
⎩

�gs(r,t,k,d)
2 = FE . Dec([[G(r,t)]], �Bs(k,d)

2 , sk(k,d)
s )

�hs(r,t,k,d)
2 = FE . Dec([[H (r,t)]], �Bs(k,d)

2 , sk(k,d)
s )

, (2)

where k = 1, · · · , K − 1, d = 1, · · · , Dk , and s = 1, · · · , Sk .
c) Intermediate Parameter Calculation: After receiving

�G(r,t,k,d)
2 and �H (r,t,k,d)

2 from CSP, PK sets lg(r,t,k,d)
0 =

0 and lh(r,t,k,d)
0 = 0, and calculates intermediate parameters

lg(r,t,k,d)
s and lh(r,t,k,d)

s of each sth bucket as⎧⎨
⎩

lg(r,t,k,d)
s = lg(r,t,k,d)

s−1 +ag(r,t)−�gs(r,t,k,d)
1 −�gs(r,t,k,d)

2

lh(r,t,k,d)
s = lh(r,t,k,d)

s−1 +ah(r,t)−�hs(r,t,k,d)
1 −�hs(r,t,k,d)

2

.

d) Gain Calculation: PK calculates every gain G(r,t,k,d)
s as

1

2

⎛
⎝(lg(r,t,k,d)

s )
2

lh(r,t,k,d)
s +λ

+(ag(r,t)−lg(r,t,k,d)
s )

2

ah(r,t)−lh(r,t,k,d)
s +λ

− (ag(r,t))
2

ah(r,t)

⎞
⎠−γ, (3)

and finds the maximum value of them (containing its local
gains), which is the best gain written as G(r,t,kopt ,dopt )

sopt , where
k = 1, · · · , K − 1, d = 1, · · · , Dk , and s = 1, · · · , Sk .

Algorithm 1 Secure Best Split Finding

Input(PK ): �M(k,d)
1 , G, H , �(r,t), mpk

Input(CSP): �M(k,d)
2 , sk(k,d)

s

Output(CSP): G(r,t,kopt ,dopt )
sopt

1: � Gradient encryption �
2: PK encrypts G and H with mpk.
3: PK sends [[G(r,t)]] and [[H (r,t)]] to CSP.
4: for k = 1, · · · , K − 1, d = 1, · · · , Dk do
5: � Shared parameter calculation �
6: PK calculates �G(r,t,k,d)

1 , �H (r,t,k,d)
1 with �M(k,d)

1 .
7: CSP calculates �G(r,t,k,d)

2 ,�H (r,t,k,d)
2 with �M(k,d)

2 .
8: CSP sends �G(r,t,k,d)

2 and �H (r,t,k,d)
2 to PK .

9: for s = 1, · · · , Sk do
10: � Intermediate parameter calculation �
11: PK calculates lg(r,t,k,d)

s and lh(r,t,k,d)
s .

12: � Gain calculation �
13: PK calculates G(r,t,k,d)

s .
14: PK obtains the best gain G(r,t,kopt ,dopt )

sopt .

• Step 2: Model Updating
After obtaining the best gain, CSP calculates shared vector

�Bopt (r,t)2 = �sopt
s=1 �Bs(kopt ,dopt )

2 and sends it to PK .
After that, PK updates the bit vectors �(r,2t) and �(r,2t+1)

as ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B(r,t)
opt =

�sopt

s=1
(1 − �Bs(kopt ,dopt )

1 ) − �Bopt (r,t)2

�(r,2t) = �(r,t) ◦ B(r,t)
opt

�(r,2t+1) = �(r,t) ◦ (1 − B(r,t)
opt )

.

Finally, if the tree depth reaches T , PK calculates the weight
�(r) = (ω

(0)
1 , · · · , ω

(0)
N ) as⎧⎪⎪⎨

⎪⎪⎩
ω(r)

n (n ∈ I (r,2t)) = − �(r,2t) · G(r)

�(r,2t) · H (r) + λ

ω(r)
n (n ∈ I (r,2t+1)) = − �(r,2t+1) · G(r)

�(r,2t+1) · H (r) + λ

.

Otherwise, PK launches the 2t th and (2t+1)th split findings.
4) Training Completed: When the tree number reaches R,

the iterative tree boosting terminates, and initiator PK obtains
the best tree structure and weights. Since the thresholds of
best splits are necessary for providing query services, which
are not shared in the model training process, all participants
outsource the ciphertext thresholds to CSP in this step.

Specifically, initiator PK sends every best split
(r, t, kopt , dopt , sopt ) to corresponding passive participant
Pkopt .

Then, for each best split (r, t, kopt , dopt , sopt ), Pkopt encrypts

the threshold ι
(kopt ,dopt )
sopt with its encryption parameter θkopt as

[ι (r,t)] = ι
(kopt ,dopt )
sopt + (r0 ∗ [0]0) + (r1 ∗ [0]1), (4)

where r0 and r1 are two random numbers. Similarly, initiator
PK encryptes its best split threshold ι

(K ,dopt )
sopt with ssk.

Finally, all participants send the encrypted best split thresh-
olds to CSP, and CSP obtains [ι (r,t)]s.

B. Description of Model Query

In this section, we introduce the model query process
of SGBoost, which contains three steps of query request,
oblivious query, and query response.

After model training, CSP obtains all best splits, which
can be re-ordered and represented as (r, t, dopt )s (dopt ∈
[1, D]). Moreover, all ciphertext best split thresholds [ι (r,t)]s
are outsourced to CSP for providing query service.

• Step 1: Query Request
In this step, for the registered query user U, initiator PK

first generates the encryption parameter θ � = ([0]0, [0]1, [−1])
with ssk, which is sent to U and CSP. Then, PK generates a
SHE symmetric key ssk � as the query key, and sends it to U.

After receiving θ �, U encrypts its query data Q =
(q1, · · · , qD) as in (4), and sends [Q] to CSP.

• Step 2: Oblivious Query
In this step, the query is executed obliviously between CSP

and PK , and CSP returns the ciphertext query response to U
(Algorithm 2). The detailed process is as follows.

a) Query Sign Calculation: On receiving [Q], by comparing
the query data value and best split threshold over ciphertexts,
CSP obtains the query sign as [as(r,t)] = [qdopt ] − [ι (r,t)](r =
1, · · · , R, t = 1, · · · , 2T − 1).

b) Query Sign Perturbation: For each query sign [as(r,t)],
CSP first generates two signed random numbers r (r,t)

0 and
r (r,t)

1 satisfying |r (r,t)
0 | > |r (r,t)

1 |. Then, CSP perturbs [as(r,t)]
as

[ps(r,t)]=
�

r (r,t)
0 ∗[as(r,t)]+r (r,t)

1 , (r (r,t)
0 > 0)

|r (r,t)
0 |∗[−1] ∗ [as(r,t)]+r (r,t)

1 , (r (r,t)
0 < 0),

(5)

The perturbed query signs [ps(r,t)]s are sent to PK .

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1029

Fig. 4. An example of query response calculation (T = 2).

c) Query Index Encoding: PK decrypts these perturbed
query signs with ssk and obtains ps(r,t)s. PK encodes every
perturbed query index [pi(r,t)] as

[pi (r,t)] =
�

([0], [1]), (ps(r,t) ≥ 0)

([1], [0]), (ps(r,t) < 0),
(6)

where [0] and [1] are SHE ciphertexts encrypted with ssk �.
Similarly, model weights are also encrypted with ssk�. PK

sends the perturbed query indexes and model weights to CSP.
d) Query Index Recovering: CSP recovers every perturbed

query index [pi (r,t)] to its true index [ai(r,t)] according to

[ai(r,t)] =
�

[pi (r,t)], (r (r,t)
0 > 0)

reverse([pi (r,t)]), (r (r,t)
0 < 0),

(7)

where reverse([pi (r,t)]) denotes reversing the order of two
ciphertexts in [pi (r,t)].

e) Query Response Calculation: As shown in Fig. 4, for
each leaf node of the r th tree, CSP first calculates a ciphertext
bit [ρ(r,t)] by multiplying its ciphertext indexes from root,
where t = 2T , · · · , 2T +1 − 1. Then, CSP calculates the
ciphertext response [π] as

[π] =
R�

r=1

2T +1−1�
t=2T

[ω(r,t)] ∗ [ρ(r,t)].

• Step 3: Query Response
CSP returns query response [π] to user U. U decrypts [π]

with ssk � and obtains its query result π .
Remark To prevent the query users from extracting model

parameters from the query results, CSP could add a slight
noise to the ciphertext query response [π], or limit the query
times of a single user.

C. Correctness Analysis

In this section, the correctness of model training and query
processes is proved, respectively.

1) Correctness of Model Training: To ensure the correctness
of model training, we need to prove that the gains are
calculated correctly during each split finding, and the model
is updated correctly by the best splits.

Theorem 1: During the tth split finding of the r th tree,
G(r,t,k,d)

s is the correct gain of dth feature’s sth bucket.

Algorithm 2 Oblivious Query

Input(CSP): [�(r)]s, [Q], [ι (r,t)]s, (r, t, dopt )s
Input(PK ): ssk, ssk �
Output(CSP): [π]

1: �Query sign calculation �
2: CSP calculates query signs [as(r,t)]s with [ι (r,t)]s and

[Q].
3: �Query sign perturbation �
4: CSP perturbs the query signs as [ps(r,t)]s.
5: CSP sends [ps(r,t)]s to PK .
6: �Query index encoding �
7: PK decrypts [ps(r,t)]s.
8: PK encodes the perturbed indexes [pi (r,t)]s with ssk �.
9: PK sends [pi(r,t)]s and [�(r)]s to CSP.

10: �Query index recovering �
11: CSP recovers the query indexes as [ai (r,t)]s.
12: �Query response calculation �
13: CSP calculates response [π] with [�(r)]s and [ai(r,t)]s.

Proof: First, the shared parameters �gs(r,t,k,d)
1 and

�gs(r,t,k,d)
2 can be deduced as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�gs(r,t,k,d)
1 =

N�
n=1

gn ∗ δ(r,t)
n ∗ �bs,n(k,d)

1

�gs(r,t,k,d)
2 =

N�
n=1

gn ∗ δ(r,t)
n ∗ �bs,n(k,d)

2

.

Then, since the bit vector �(r,t) denotes the sample space of
the t th split finding, we can compute

ag(r,t) − �gs(r,t,k,d)
1 − �gs(r,t,k,d)

2

=
N�

n=1

gn ∗ δ(r,t)
n ∗ (1 − �bs,n(k,d)

1 − �bs,n(k,d)
2 )

=
�

n∈I (r,t)
gn ∗ δ(r,t)

n ∗ bs,n
(k,d)

=
�

n∈I (r,t) ,ι
(k,d)
s <x (k)

n,d≤ι
(k,d)
s+1

gn.

After that, lg(r,t,k,d)
s can be deduced as

lg(r,t,k,d)
s =

s�
i=1

��
n∈I (r,t) ,ι

(k,d)
i <x (k)

n,d ≤ι
(k,d)
i+1

gn

�

=
�

n∈I (r,t,k,d,s)
L

gn.

Similarly, we can prove lh(r,t,k,d)
s = �

n∈I (r,t,k,d,s)
L

hn .
Therefore, it is obvious that (3) is equivalent to (1), i.e.,

gain G(r,t,k,d)
s is correctly calculated.

Theorem 2: During the t th split finding of the r th
tree, �(r,t) is updated correctly by the best split
(r, t, kopt , dopt , sopt ).

Proof: First, given (kopt , dopt , sopt ), B(r,t)
opt is deduced as

B(r,t)
opt =

sopt�
s=1

(1 − �Bs(kopt ,dopt )
1 − �Bs(kopt ,dopt )

2 )

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



1030 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

=
sopt�
s=1

B
(kopt ,dopt )
s .

Then, we can obtain

δ(r,2t)
n =

sopt�
s=1

δ(r,t)
n ·b(kopt ,dopt )

s,n =
�

1, (n ∈ I
(r,t,kopt ,dopt ,sopt )
L )

0, (else),

i.e., �(r,2t) contains the data samples of the current best split’s
left node, which are used for the 2tth split finding. Similarly,
�(r,2t+1) contains the right data samples using for the (2t +
1)th split. Therefore, �(r,t) is updated correctly by the best
split.

2) Correctness of Model Query: Here we prove that the
query result is calculated correctly.

Theorem 3: π is the correct query result of Q querying the
trained model.

Proof: According to (6) and (7), we can obtain

[ai (r,t)] =
�

([0], [1]), (ps(r,t) ∗ r (r,t)
0 ≥ 0)

([1], [0]), (ps(r,t) ∗ r (r,t)
0 < 0).

Since |r (r,t)
0 | > |r (r,t)

1 |, r (r,t)
1 does not affect the sign of r (r,t)

0 ∗
as(r,t), and as(r,t) has the same sign with ps(r,t) ∗ r (r,t)

0 . Then,
from as(r,t) = qdopt − ι (r,t), we obtain

[ai(r,t)] =
�

([0], [1]), (qdopt ≥ ι (r,t))

([1], [0]), (qdopt < ι(r,t)).

Obviously, only the indexes on the correct query path are
all [1]s and the multiplication ρ(r,t) is [1]. Finally, the query
response can be represented as

[π] =
R�

r=1

2T +1−1�
t=2T

[ω(r,t)] ∗ [ρ(r,t)] = [
R�

r=1

fr (Q)],

which is the same with the prediction equation shown in
Section III-A.

Therefore, π is the correct query result of Q querying the
trained model.

VI. SECURITY ANALYSIS

In this section, under the threat model defined in Section II,
we analyze the security in model training and query processes.

A. Security of Model Training

The security in model training process involves the privacy
of raw training data, bucket information, and split information.

1) Raw Training Data: First, in SGBoost, participants only
use their data values to locally execute data bucketing, which
do not involve privacy.

Then, during each best split finding, the gradients G and
H (the superscripts are omitted for simplicity) are calculated
by PK based on its data labels, which are encrypted by FE
and sent to CSP. As proved in [31], the functional encryption
is selective security against chosen-plaintext attacks (s-IND-
CPA). So the plaintext gradients cannot be obtained by CSP
for inferring the data labels.

Meanwhile, �G2 and �H 2 can be obtained by CSP, which
are the inner products of the gradients and its shared bit vector
�Bs2. For ensuring the privacy of data labels, we only need
to prove that CSP cannot obtain gradient vector G based on
the matrix �M2 and vector �G2. The proof of H is the same
and is omitted.

Theorem 4: CSP cannot obtain G based on �G2 and �M2.
Proof: First, according to (2), �G2 can be represented as

�G2 = G · [�M2]T , (8)

where �M2 is a (Sk × N)-dimension random bit matrix.
For obtaining G, CSP needs to solve the linear equation (8).
According to the conditions for solving linear equations, when
N > Sk , it has infinite solutions. In SGBoost, since the
number of data samples is much larger than that of buckets,
i.e., N � Sk , G has infinite solutions. Therefore, CSP cannot
obtain G.

Moreover, CSP can obtain the weights ωs but cannot obtain
the splits �s, so these weights cannot correspond to the data
samples and do not have a threat to the data labels.

In summary, the raw training data (containing data values
and labels) are protected well in SGBoost.

2) Bucket Information: In SGBoost, based on our bucket
sharing algorithm, the bucket matrix M is divided into two
matrices �M1 and �M2, which are sent to PK and CSP. For
ensuring the privacy of bucket information, we prove that PK

cannot infer which bucket a certain data sample xn exists in
based on �M2, and the proof of �M1 is the same and is
omitted.

Theorem 5: PK cannot obtain which bucket a certain data
sample xn exists in based on �M2.

Proof: First, we formally the proof as

Pr SGBoost[s ∈ ZS : bs,n =1]−Pr Random[s ∈ ZS : bs,n =1] ≤ θ,

where θ is a small probability. Based on �M1 or �M2, we
calculates the correct inference probability from SGBoost as

Pr SGBoost[s ∈ ZS : bs,n = 1] =
S−1�
i=0

Ci
S−1

1

2S−1

1

S − i
,

where C denotes the combinatorial number. And the successful
probability of random inference is Pr Random[s ∈ ZS : bs,n =
1] = 1

S . Here assume the bucket number S = 32, then we can
calculate Pr SGBoost[s ∈ ZS : bs,n = 1] − Pr Random[s ∈ ZS :
bs,n = 1] = 0.0312, which is a small probability. Therefore,
the inference based on �M2 is almost equivalent to random
guessing, and PK cannot obtain which bucket a certain data
sample xn exists in.

3) Split Information: Unlike [10] and [11], which directly
share the plaintext split information, SGBoost embeds the split
information to gradients and encrypts the gradients for every
best split finding. According to the s-IND-CPA of functional
encryption, CSP cannot obtain the true values of gradients,
so it cannot infer the split information by judging whether a
certain gradient is zero.

B. Security of Model Query

The security in model query process involves the privacy of
query data, query result, and weight information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1031

1) Query Data: During model query, users’ query data
are encrypted with ssk, which is only mastered by initiator
PK , and the query data are sent to CSP. According to the
IND-CPA of SHE [34], which is equivalent to solving (L, p)-
based decision hard problem to distinguish SHE ciphertexts,
the query data of users are protected well.

2) Query Result: For inferring the query results, CSP or PK

needs to obtain the query signs and classify the query data into
the corresponding nodes for every tree. So we only need to
prove that these query signs cannot be obtained by CSP or PK .

Theorem 6: CSP cannot obtain query signs as(r,t)s.
Proof: First, the query signs [as(r,t)]s are calculated over

SHE cipertexts encrypted with ssk, which cannot be decrypted
by CSP since only PK has ssk. Then, the indexes pi (r,t)s also
contain the query signs, e.g., ([0], [1]) denotes the positive
sign, but they are also encypted with SHE key ssk� and cannot
be decrypted by CSP. Therefore, according to the IND-CPA
of SHE, CSP cannot obtain query signs as(r,t)s.

Theorem 7: PK cannot obtain query signs as(r,t)s.
Proof: During the model query, PK can decrypt the

perturbed query signs and obtain ps(r,t)s. However, according
to (5), as(r,t)s are protected by two random numbers r (r,t)

0 and
r (r,t)

1 as ps(r,t) = r (r,t)
0 ∗ as(r,t) + r (r,t)

1 , and PK cannot obtain
no matter the true values or signs of as(r,t)s. Therefore, the
query signs cannot be obtained by PK .

Therefore, due to without the query signs, CSP or PK cannot
infer the query results of users.

3) Weight Information: Different from [10] and [11], which
send the plaintext weights to passive participants, the weights
in SGBoost are encrypted and then outsourced to CSP. There-
fore, the query in SGBoost does not leak the weights and the
leaf purity.

VII. PERFORMANCE EVALUATION

In this section, we first introduce the experimental set-
tings. Then, we evaluate and compare the model accuracy of
SGBoost with centralized XGBoost [37]. After that, the run-
ning time and communication overhead of SGBoost are eval-
uated and compared with representative secure FL schemes
SecureBoost [11] and PIVODL [16], which will be reviewed
in Section VIII.

A. Experimental Setting

In the experiments, we choose the XGBoost model to evalu-
ate the performance of our SGBoost framework. The program
of CSP is performed on a DELL Precision 7920 worksta-
tion with an Intel(R) Xeon(R) Gold 6226R CPU 2.90 GHz
processor, 256 GB RAM, running Ubuntu 20.04, and par-
ticipants and query users execute programs on Thinkpad
P53 machines equipped with an Intel(R) Core(TM) i5-9400H
2.50GHz processor and 24 GB RAM, running Windows 10.
These programs2 are implemented with Java 16.0.1. The
communication bandwidth between CSP/initiator and passive
participants is set as 10 Mbps, that between CSP and initiator

2https://github.com/nds2022/SGBoost

TABLE II

HYPERPARAMETERS IN PERFORMANCE EVALUATION

is set as 100 Mbps, and that between the query user and CSP
is set as 10 Mbps.

We evaluate the performance of SGBoost under different
hyperparameter settings containing participant numbers, tree
numbers, and tree depths. For simplicity, the bucket numbers
of all participants are set to 32. During model training, we set
the security parameter κ = 512, which is consistent with
the comparison schemes. Since different SHE multiplication
depths are needed under different tree depths for executing
model queries, as explained in Section III-C, we set different
security parameters of query key ssk �. The used hyperparame-
ters of SGBoost are also listed in TABLE II.

Two real-world classification datasets are experimented in
SGBoost, where 20% of data samples are randomly selected
as the test data, and the data features are evenly divided into
participants.

1) Credit Card [38]: This dataset records 24 credit scoring
features of 30000 users, which aims to predict whether a user
will make payment on time.

2) Bank Marketing [39]: This dataset records direct mar-
keting campaigns (phone calls) of a Portuguese banking insti-
tution, which contains 45211 samples and 17 features. Its
classification goal is to predict if the client will subscribe to
a term deposit.

In the following performance evaluations, every experiment
repeated five times independently, and only the average results
are shown. The evaluation results of SecureBoost and PIVODL
come from [11] and [16].

B. Model Accuracy

In this subsection, we evaluate the model accuracy of
SGBoost on the test datasets, which is measured by the
probability of correct prediction, and make a comparison with
the basic centralized XGBoost scheme.

From Fig. 5, first, we can find that the increase of model
accuracy is not significant with the tree number or depth
growth. Second, we find that the boosting tree model can
converge with a small tree depth like 3 or 4. Third, on both
two test datasets, we can see that our SGBoost has com-
parable accuracy with centralized XGBoost, and even can

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



1032 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 5. Model accuracy comparison. (a) Varying different tree numbers over
Credit Card dataset. (b) Varying different tree numbers over Bank Marketing
dataset. (c) Varying different tree depths over Credit Card dataset. (d) Varying
different tree depths over Bank Marketing dataset.

exceed the model accuracy of XGBoost under some settings.
This phenomenon may be because the expand-then-round
encryption method in SGBoost makes its arithmetic precision
slightly lower than XGBoost, and the slightly lower arithmetic
precision instead enhances the model generalization ability
and reduces the model overfitting. Overall, the experimental
results show that our SGBoost does not cause a loss of model
accuracy and convergence speed.

C. Running Time

In this subsection, we will show the total running time of
SGBoost’s training and query processes, and compare it with
schemes PIVODL and SecureBoost. Moreover, we analyze the
relationships between the running time and different partici-
pant numbers, tree depths, and tree numbers.

1) Training Time With Different Participant Numbers:
From Fig. 6(a) and Fig. 6(b), we find that, under the same
experimental settings, the total training time of SGBoost is
significantly lower than that of PIVODL or SecureBoost,
since SGBoost does not need frequent interactions between
participants. Moreover, since the passive participants only need
to securely share their boolean buckets, whose overhead is
indeed low, the training time of SGBoost hardly changes with
the participant number changes. Therefore, it demonstrates that
SGBoost is more suitable for multi-participant training scenes.

2) Training Time With Different Maximum Tree Numbers:
Fig. 6(c) and Fig. 6(d) show the linear increase relationship
between the training time and tree number for all three
schemes since every tree boosting costs the same time. Like-
wise, since a single tree boosting executes quickly, SGBoost
costs much less time than PIVDOL or SecureBoost, and its
running time increases slower with the tree number growing.
Therefore, SGBoost can be used to train large-scale models.

3) Training Time With Different Maximum Tree Depths:
Fig. 6(e) and Fig. 6(f) plot the training time with different tree

Fig. 6. Total training time comparison. (a) Varying different participant
numbers over Credit Card dataset. (b) Varying different participant numbers
over Bank Marketing dataset. (c) Varying different tree numbers over Credit
Card dataset. (d) Varying different tree numbers over Bank Marketing dataset.
(e) Varying different tree depths over Credit Card dataset. (f) Varying different
tree depths over Bank Marketing dataset.

depths, and it increases significantly as the tree depth grows,
which means that the tree depth is the main factor affecting
the training time. Meanwhile, compared with the other two
schemes, since SGBoost protects the split information, i.e.,
it will encrypt the gradients for every split, its training time
grows faster when the tree goes deeper. Despite it, benefiting
from the efficient algorithm design, SGBoost’s training is
also faster than PIVODL and SecureBoost, e.g., it only costs
50 seconds to train a 3-depth tree model on the Credit
Card dataset, which prompts the privacy-preserving federated
training more practical.

4) Query Time With Different Maximum Tree Numbers and
Depths: From Fig. 7, we can find that the query time increases
slowly with the increase of the tree number, but increases
rapidly with the tree depth growing. And the query time of
two test datasets is almost the same under the same setting,
which demonstrates that it has almost nothing to do with the
datasets. Moreover, SGBoost only costs about 3 seconds to
execute 1000 queries under the default setting, and it means
that SGBoost has very low latency for query services.

D. Communication Overhead

In this subsection, we plot and analyze the communication
overhead with different participant numbers, tree depths, and

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1033

Fig. 7. Total query time per 1000 queries. (a) Varying tree numbers.
(b) Varying tree depths.

tree numbers, and also make a comparison with the represen-
tative schemes PIVODL and SecureBoost.

1) Training Communication Overhead With Different Par-
ticipant Numbers: From Fig. 8(a) and Fig. 8(b), we can
find that the communication overhead of our SGBoost is
almost unrelated to the participant number, since passive
participants do not need to participate in the interactions after
bucket sharing. Since the ciphertext gradients in PIVODL and
SecureBoost are required to send to every participant, the com-
munication overhead of PIVODL and SecureBoost increases
linearly when the participant number grows. Moreover, the
communication overhead of the Bank Marketing datasets is
higher than that of Credit Card, which is because its data
samples are more. Therefore, SGBoost is more practical and
has low requirements for the network bandwidth when the
participant number is large.

2) Training Communication Overhead With Different Max-
imum Tree Numbers: The communication overhead increases
linearly when the tree number increases for all three schemes,
as shown in Fig. 8(c) and Fig. 8(d). Moreover, SGBoost’s
communication overhead is lower than PIVODL on the Credit
Card dataset but higher on the Bank Marketing dataset, which
means SGBoost is more suitable for the dataset that has fewer
samples and more features.

3) Training Communication Overhead With Different Max-
imum Tree Depths: Fig. 8(e) and Fig. 8(f) show that the
communication overhead of SGBoost increases rapidly as the
tree goes deeper, which is because the split information is
protected in SGBoost and the ciphertext gradients are sent in
every split finding. Fortunately, the XGBoost model does not
need a lot of tree depth, and the depths 3 and 4 can achieve
high accuracy for most datasets, which is shown in [29]
and can also be seen in our accuracy evaluation. Moreover,
in SGBoost, the vast majority of communication is between the
initiator and CSP, whose communication bandwidth is much
larger than that between participants.

4) Query Communication Overhead With Different Maxi-
mum Tree Numbers and Depths: Fig. 9 shows the commu-
nication overhead of queries increases more rapidly with tree
depth growing than with tree number growing, and also shows
that the communication overhead is almost not related to
the datasets. Also, the communication overhead of the model
query in SGBoost is quite low, and it only costs about 38 KB
to achieve a model query with a default tree model.

In summary, SGBoost’s training efficiency is higher than
the existing schemes under most practical settings, and it is

Fig. 8. Training communication overhead comparison. (a) Varying different
participant numbers over Credit Card dataset. (b) Varying different participant
numbers over Bank Marketing dataset. (c) Varying different tree numbers over
Credit Card dataset. (d) Varying different tree numbers over Bank Marketing
dataset. (e) Varying different tree depths over Credit Card dataset. (f) Varying
different tree depths over Bank Marketing dataset.

Fig. 9. Communication overhead per 1000 queries. (a) Varying tree numbers.
(b) Varying tree depths.

more efficient when the dataset has fewer samples and more
features. Meanwhile, the efficiency of SGBoost is almost unre-
lated to the participant number and can be used for massive
participant scenarios. Moreover, while satisfying the strong
security, the overhead of the oblivious query is indeed low.

VIII. RELATED WORK

According to data distribution, Yang et al. [8] classified FL
into horizontal FL and vertical FL. In vertical FL, participants’
data share a common sample space but a different feature

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



1034 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE III

SECURITY AND FUNCTIONALITY COMPARISON OF VERTICAL FEDERATED TREE BOOSTING SCHEMES

space, e.g., a bank and a securities company serving common
users. In this section, we review some related works about
vertical FL, which based on the targeted model type can be
classified into schemes for linear models, non-linear models,
and boosting tree models.

A. Vertical FL Schemes for Linear Models

Since linear models are the simplest models in machine
learning, the vertical linear FL schemes were first proposed.

By combining Yao’s garbled circuits and tailored protocols,
Gascon et al. [40] designed a hybrid secure inner-product com-
putation protocol for building linear regression models with
vertically partitioned data, which has comparable accuracy to
other schemes without privacy constraints. Wang et al. [41]
proposed a privacy-preserving vertical FL scheme for naive
bayesian classification. Specifically, they designed a modified
Paillier cryptosystem by splitting the secret key, which can
securely aggregate the training data for model construction.
Moreover, they applied the random masking technique to
protect the query data.

B. Vertical FL Schemes for Non-Linear Models

Besides the above linear models, vertical FL schemes for
non-linear models like logistic regression also received the
attention of researchers.

Hardy et al. [36] proposed a three-party federated logistic
regression scheme over vertically partitioned data. In their
scheme, the loss function is first approximated by Taylor
series expansion for fitting homomorphic encryption. Then,
two participants encrypt their partial gradients with additive
homomorphic encryption, which are combined and decrypted
by a third party for model updating. However, any participant
can infer the partial gradients of another form the model
updates. Zhao et al. [42] solved the above privacy issues by
designing a data aggregation matrix construction algorithm,
which can aggregate the vertically partitioned data for logistic
regression model training, meanwhile, without multi-round
interactions between participants and the third party.

C. Vertical FL Schemes for Boosting Tree Models

Most vertical federated tree boosting schemes assume that
participants are divided into an active one holding data labels
and other passive ones.

Based on homomorphic encryption, Cheng et al. [11] pro-
posed a vertical federated tree boosting framework named

SecureBoost, where the ciphertext gradients are transferred
between active and passive participants for performing split
findings. However, the split information is leaked to passive
participants in SecureBoost; moreover, the passive participants
must stay connected with the active participant during training.
Tian et al. [15] proposed an FL framework named FederBoost
for gradient boosting decision tree model, which supports
model training over both horizontally and vertically partitioned
data. In vertical FederBoost, the bucket information of passive
participants is perturbed by an exponential mechanism of
differential privacy. However, the noises in buckets will reduce
the accuracy of the global model. By combining the threshold
partially homomorphic encryption and secure multi-party com-
putation protocols, Wu et al. [17] designed a hybrid scheme
named Pivot for vertical federated decision tree training. Pivot
can strictly protect the data information, but the frequently
used cryptographic operations cause unacceptable overhead.

Different from the above schemes, SGBoost achieves loss-
less and efficient federated tree boosting, while protecting the
bucket and split information. Moreover, participants do not
need to stay online in the model training process. Finally,
we compare the security and functionality of SGBoost with
several existing representative schemes in TABLE III.

IX. CONCLUSION

In this paper, we have proposed SGBoost, an efficient and
privacy-preserving vertical federated tree boosting framework,
which can achieve the high-accuracy model training and query
securely and efficiently. Security analysis demonstrates that
SGBoost can protect the training and query data information
against the inference of honest-but-curious CSP and partic-
ipants. Moreover, experimental results on several real-world
datasets show its high accuracy and efficient performance.
To further improve the system efficiency, we consider estab-
lishing a trusted execution environment (TEE) [43] in the
initiator to assist in model training, which might be explored
in our future studies.

REFERENCES

[1] European Parliament and Council of the European Union. (Apr. 2016).
General Data Protection Regulation. [Online]. Available: https://eur-
lex.europa.eu/eli/reg/2016/679/oj/

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Artificial Intelligence and Statistics (Pro-
ceedings of Machine Learning Research), vol. 54. Fort Lauderdale, FL,
USA: PMLR, Apr. 2017, pp. 1273–1282.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SGBoost: AN EFFICIENT AND PRIVACY-PRESERVING VERTICAL FEDERATED TREE BOOSTING FRAMEWORK 1035

[3] P. Kairouz et al., “Advances and open problems in federated learn-
ing,” Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210,
Jun. 2021.

[4] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2019, pp. 691–706.

[5] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Proc.
NeurIPS, 2019, pp. 14747–14756.

[6] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
2020, arXiv:2003.02133.

[7] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via GradInversion,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 16337–16346.

[8] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning (Synthesis Lectures on Artificial Intelligence and Machine
Learning). San Rafael, CA, USA: Morgan & Claypool, 2019.

[9] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, p. 12, 2019.

[10] Y. Liu, Y. Liu, Z. Liu, J. Zhang, C. Meng, and Y. Zheng, “Federated
forest,” 2019, arXiv:1905.10053.

[11] K. Cheng et al., “SecureBoost: A lossless federated learning framework,”
IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, Dec. 2021.

[12] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Advances in Cryptology—EUROCRYPT (Lecture Notes
in Computer Science), vol. 1592. Prague, Czech Republic: Springer,
1999, pp. 223–238.

[13] C. Dwork, “Differential privacy: A survey of results,” in Theory and
Applications of Models of Computation (Lecture Notes in Computer
Science), vol. 4978. Xi’an, China: Springer, 2008, pp. 1–19.

[14] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[15] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “FederBoost: Private
federated learning for GBDT,” 2020, arXiv:2011.02796.

[16] H. Zhu, R. Wang, Y. Jin, and K. Liang, “PIVODL: Privacy-preserving
vertical federated learning over distributed labels,” IEEE Trans. Artif.
Intell., early access, Dec. 28, 2021, doi: 10.1109/TAI.2021.3139055.

[17] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proc. VLDB Endow-
ment, vol. 13, no. 12, pp. 2090–2103, Aug. 2020.

[18] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in Advances in
Cryptology (Lecture Notes in Computer Science), vol. 7417. New York,
NY, USA: Springer-Verlag, Aug. 2012, pp. 643–662.

[19] A. Beimel, “Secret-sharing schemes: A survey,” in IWCC Coding and
Cryptology (Lecture Notes in Computer Science), vol. 6639. Qingdao,
China: Springer, 2011, pp. 11–46.

[20] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Def-
initions and challenges,” in Proc. TCC, (Lecture Notes in Com-
puter Science), vol. 6597. Cham, Switzerland: Springer, 2011,
pp. 253–273.

[21] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani, “Achiev-
ing O(log3)n) communication-efficient privacy-preserving range query
in fog-based IoT,” IEEE Internet Things J., vol. 7, no. 6, pp. 5220–5232,
Jun. 2020.

[22] Q. Zhang, B. Gu, C. Deng, and H. Huang, “Secure bilevel asynchronous
vertical federated learning with backward updating,” in Proc. AAAI Conf.
Artif. Intell. Palo Alto, CA, USA: AAAI Press, 2021, pp. 10896–10904.

[23] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,”
in Providing Sound Foundations for Cryptography. New York, NY,
USA: ACM, 2019, pp. 307–328.

[24] S. Kariyappa, A. Prakash, and M. K. Qureshi, “MAZE: Data-free
model stealing attack using zeroth-order gradient estimation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 13814–13823.

[25] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “PRADA: Protecting
against DNN model stealing attacks,” in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS P), Jun. 2019, pp. 512–527.

[26] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “The limitations of
federated learning in sybil settings,” in Proc. 23rd Int. Symp. Res.
Attacks, Intrusions Defenses (RAID). Berkeley, CA, USA: USENIX
Association, 2020, pp. 301–316.

[27] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks
to Byzantine-robust federated learning,” in Proc. USENIX Secur. Symp.
Berkeley, CA, USA: USENIX Association, 2020, pp. 1605–1622.

[28] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-
enhanced federated learning against poisoning adversaries,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 4574–4588, 2021.

[29] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[30] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 6110.
Monaco: Springer, 2010, pp. 62–91.

[31] M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval, “Simple
functional encryption schemes for inner products,” in Public Key Cryp-
tography (Lecture Notes in Computer Science), vol. 9020. Gaithersburg,
MD, USA: Springer, 2015, pp. 733–751.

[32] Y. Zheng, R. Lu, Y. Guan, S. Zhang, J. Shao, and H. Zhu, “Efficient and
privacy-preserving similarity query with access control in eHealthcare,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 880–893, 2022.

[33] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., vol. 51, no. 4, p. 79, Jul. 2018.

[34] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2501–2516,
Jul. 2022.

[35] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatiotemporal keyword query for
ITS in 6G era,” IEEE Internet Things J., vol. 8, no. 22, pp. 16243–16255,
Nov. 2021.

[36] S. Hardy et al., “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” 2017,
arXiv:1711.10677.

[37] Distributed (Deep) Machine Learning Community. (Feb. 2014). Scal-
able, Portable and Distributed Gradient Boosting (GBDT, GBRT or
GBM) Library. [Online]. Available: https://github.com/dmlc/xgboost

[38] I.-C. Yeh and C.-H. Lien, “The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card
clients,” Exp. Syst. Appl., vol. 36, pp. 2473–2480, Mar. 2009.

[39] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the
success of bank telemarketing,” Decis. Support Syst., vol. 62, no. 1,
pp. 22–31, Jun. 2014.

[40] A. Gascón et al., “Secure linear regression on vertically partitioned
datasets,” in Proc. IACR Cryptol. ePrint Arch., 2016, p. 892.

[41] F. Wang, H. Zhu, R. Lu, Y. Zheng, and H. Li, “Achieve efficient
and privacy-preserving disease risk assessment over multi-outsourced
vertical datasets,” IEEE Trans. Dependable Secure Comput., vol. 19,
no. 3, pp. 1492–1504, May 2022.

[42] J. Zhao et al., “ACCEL: An efficient and privacy-preserving federated
logistic regression scheme over vertically partitioned data,” Sci. China
Inf. Sci., vol. 65, no. 7, pp. 1–2, 2022.

[43] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution envi-
ronment: What it is, and what it is not,” in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2015, pp. 57–64.

Jiaqi Zhao was born in China in 1997. He received
the B.Eng. degree in information security from
Xidian University, Xi’an, Shaanxi, China, in 2020,
where he is currently pursuing the Ph.D. degree in
cyberspace security.

His research has been concerned with
privacy-preserving machine learning.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TAI.2021.3139055


1036 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Hui Zhu (Senior Member, IEEE) received the B.Sc.
degree from Xidian University, Xi’an, Shaanxi,
China, in 2003, the M.Sc. degree from Wuhan
University, Wuhan, Hubei, China, in 2005, and the
Ph.D. degree from Xidian University in 2009.

He was a Research Fellow with the School of
Electrical and Electronics Engineering, Nanyang
Technological University, Singapore, in 2013. Since
2016, he has been a Professor with the School of
Cyber Engineering, Xidian University. His current
research interests include applied cryptography, data
security, and privacy.

Wei Xu was born in China in 1999. He received the
B.Eng. degree in information security from Xidian
University, Xi’an, Shaanxi, China, in 2022, where he
is currently pursuing the M.A. degree in cyberspace
security.

His research has been concerned with privacy-
preserving machine learning.

Fengwei Wang received the B.Sc. and Ph.D. degrees
from Xidian University, China, in 2016 and 2021,
respectively.

In 2019, he was a Visiting Scholar with the
Faculty of Computer Science (FCS), University of
New Brunswick (UNB), Canada. Since 2021, he has
been a Lecturer with the School of Cyber Engineer-
ing, Xidian University. His research interests include
applied cryptography, big data security, and privacy
protection.

Rongxing Lu (Fellow, IEEE) received the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada,
in 2012. He is currently the Mastercard IoT Research
Chair, a University Research Scholar, and an Asso-
ciate Professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an Assistant
Professor at the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity (NTU), Singapore, from April 2013 to August

2016. He worked as a Post-Doctoral Fellow at the University of Waterloo from
May 2012 to April 2013. His research interests include applied cryptography,
privacy enhancing technologies, and the IoT-big data security and privacy.
He has published extensively in his areas of expertise. He was awarded the
most prestigious Governor General’s Gold Medal, when he received the Ph.D.
degree in 2012 and won the 8th IEEE Communications Society (ComSoc)
Asia Pacific (AP) Outstanding Young Researcher Award in 2013. He was a
recipient of nine best (student) paper awards from some reputable journals and
conferences. He also serves as the Chair for IEEE Communications and Infor-
mation Security Technical Committee (ComSoc CIS-TC) and the Founding
Co-Chair for IEEE TEMS Blockchain and Distributed Ledgers Technologies
Technical Committee (BDLT-TC). He is the Winner of 2016–2017 Excellence
in Teaching Award, FCS, UNB.

Hui Li (Member, IEEE) received the B.Sc. degree
from Fudan University in 1990 and the M.Sc. and
Ph.D. degrees from Xidian University, China, in
1993 and 1998, respectively.

Since 2005, he has been a Professor with the
School of Telecommunication Engineering, Xidian
University. His research interests include cryptogra-
phy, wireless network security, information theory,
and network coding.

Dr. Li served as the TPC Co-Chair for ISPEC
2009 and IAS 2009, the General Co-Chair for

E-Forensic 2010, ProvSec 2011, and ISC 2011, and the Honorary Chair for
NSS 2014 and ASIACCS 2016.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:53:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


